
Unit –ii

Boolean Algebra.

Boolean Algebra is the mathematics we use to analyse digital gates and circuits. We can use

these “Laws of Boolean” to both reduce and simplify a complex Boolean expression in an

attempt to reduce the number of logic gates required. Boolean Algebra is therefore a system of

mathematics based on logic that has its own set of rules or laws which are used to define and

reduce Boolean expressions.

The variables used in Boolean Algebra only have one of two possible values, a logic “0” and a

logic “1” but an expression can have an infinite number of variables all labelled individually to

represent inputs to the expression, For example, variables A, B, C etc, giving us a logical

expression of A + B = C, but each variable can ONLY be a 0 or a 1

Laws of Boolean Algebra

• Annulment Law – A term AND´ed with a “0” equals 0 or OR´ed with a “1” will equal 1

•

o A . 0 = 0 A variable AND’ed with 0 is always equal to 0

o A + 1 = 1 A variable OR’ed with 1 is always equal to 1

•

• Identity Law – A term OR´ed with a “0” or AND´ed with a “1” will always equal that

term

•

o A + 0 = A A variable OR’ed with 0 is always equal to the variable

o A . 1 = A A variable AND’ed with 1 is always equal to the variable

•

• Idempotent Law – An input that is AND´ed or OR´ed with itself is equal to that input

•

o A + A = A A variable OR’ed with itself is always equal to the variable

o A . A = A A variable AND’ed with itself is always equal to the variable

•

• Complement Law – A term AND´ed with its complement equals “0” and a term OR´ed

with its complement equals “1”

•

o A . A = 0 A variable AND’ed with its complement is always equal to 0

o A + A = 1 A variable OR’ed with its complement is always equal to 1

•

• Commutative Law – The order of application of two separate terms is not important

•

o A . B = B . A The order in which two variables are AND’ed makes no

difference

o A + B = B + A The order in which two variables are OR’ed makes no difference

•

• Double Negation Law – A term that is inverted twice is equal to the original term

•

o A = A A double complement of a variable is always equal to the variable

•

• de Morgan´s Theorem – There are two “de Morgan´s” rules or theorems,

•

• (1) Two separate terms NOR´ed together is the same as the two terms inverted

(Complement) and AND´ed for example: A+B = A . B

•

• (2) Two separate terms NAND´ed together is the same as the two terms inverted

(Complement) and OR´ed for example: A.B = A + B

Other algebraic Laws of Boolean not detailed above include:

• Distributive Law – This law permits the multiplying or factoring out of an expression.

•

o A(B + C) = A.B + A.C (OR Distributive Law)

o A + (B.C) = (A + B).(A + C) (AND Distributive Law)

•

• Absorptive Law – This law enables a reduction in a complicated expression to a simpler

one by absorbing like terms.

•

o A + (A.B) = A (OR Absorption Law)

o A(A + B) = A (AND Absorption Law)

•

• Associative Law – This law allows the removal of brackets from an expression and

regrouping of the variables.

•

o A + (B + C) = (A + B) + C = A + B + C (OR Associate Law)

o A(B.C) = (A.B)C = A . B . C (AND Associate Law)

Boolean Algebra Functions

Using the information above, simple 2-input AND, OR and NOT Gates can be represented by 16

possible functions as shown in the following table.

Function Description Expression

1. NULL 0

2. IDENTITY 1

3. Input A A

4. Input B B

5. NOT A A

6. NOT B B

7. A AND B (AND) A . B

8. A AND NOT B A . B

9. NOT A AND B A . B

10. NOT AND (NAND) A . B

11. A OR B (OR) A + B

12. A OR NOT B A + B

13. NOT A OR B A + B

14. NOT OR (NOR) A + B

15. Exclusive-OR A . B + A . B

16. Exclusive-NOR A . B + A . B

Laws of Boolean Algebra Example No1

Using the above laws, simplify the following expression: (A + B)(A + C)

Q = (A + B).(A + C)

 A.A + A.C + A.B + B.C – Distributive law

 A + A.C + A.B + B.C – Idempotent AND law (A.A = A)

 A(1 + C) + A.B + B.C – Distributive law

 A.1 + A.B + B.C – Identity OR law (1 + C = 1)

 A(1 + B) + B.C – Distributive law

 A.1 + B.C – Identity OR law (1 + B = 1)

Q = A + (B.C) – Identity AND law (A.1 = A)

The K-map method up to five variable

Karnaugh Map, on the hand is a simple and a straight forward method of minimizing

Boolean expressions. Karnaugh Maps are used for many small design problems. Karnaugh

Map is also known as K-Map. K-Map is just another way of presenting the information in a

truth table.

K-Map is grid like representation of a truth table. It is made up of squares. It has 0’s and

1’s entries at different positions. Each position in a grid corresponds to a truth table entry.

So, in other words, K-Map is just another way of presenting the information in a truth

table.

Two variable map

K-Map has an advantage that it is designed to present the information in a way that allow

easy grouping of terms that can be combined. It is pictorial map method. Fig. shows a two

variable map.

A A

B B
0 01 1

0 0

1 1

m2 AB AB

AB

m1

m2 m3 AB

 In fig A and B are the two inputs having two possible values 0 and 1 individually.

Combining the inputs we have four possible combinations A’B’, A’B, AB’, AB and can be

represented by m0, m1, m2, m3. If we have to represent A’B then it is equal to m1 and belong

to the square to which m1 belongs. Example below shows the relation between the K-Map

and truth table for a two-variable problem.

A B F

0 0

0 1

1 0

1 1

0

0

0

1

 Table . Truth table for two variables

A

B
0 1

0

01

 Fig. K-Map for two variables

In this the square on the lower right of map has coordinates A = 1 and B = 0. This square

corresponds to the row in the truth table where A = 1 and B = 0 and F = 0.

Three Variable Map. In this map we have three input variables and minimum one output.

For three variables the possible input combinations are 000, 001, 010, 011, 100, 101, 110,

111. So, we can make the K-Map by taking these values in such a way that adjacent squares

differ only in one way i.e.

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

A
BC

00 01 11 10

0

1

Fig. K-Map for three variables.

K-Maps are used for minimization; this can be achieved by combining those squares in K-

map which contain 1’s.

Four Variable Map. We make this map similarly as three variable map, we have a total of

8 squares i.e. 23, so in four variable maps we create 24 = 16 squares. If the variables are A,

B, C, D the

A B C D

A BC D

ABC D

AB C D

ABCD

ABCD

ABCD

ABCD

A B C D

A BC D

ABCD

AB C D

A B C D

A BC D

ABCD

AB C D

00

01

11

10

00 01 1011AB
CD

Fig. . K-Map for four variables

For minimization or simplification of K-Map we follow the given rules

(i) Groups may either contain only 1’s or only 0’s.

A A

B B
0 01 1

0 0

1 1

0 1

1 1

WRONG CORRECT

Fig. Grouping of 1’s.

(ii) Groups may be vertical or horizontal but not diagonal.

A A

B B
0 01 1

0 0

1

1

1

1

1 1

WRONG CORRECT

A

B
0 1

0 11

1

CORRECT

Fig. Vertical and horizontal grouping of 1’s

(iii) Map may contain 1, 2, 4, 8 or in general 2n cells i.e. if n = 1, a group will contain two 1’s

as 21 = 2 where n is the number of input variable and a group may contain as many

number of cells which satisfy equation 2n.

A A
B B

0010

0 1 1 1 11

1

RIGHT CORRECT

01 11 10

0

1

Fig. Two inputs so total of 4 cells and a group of 2 = 21

Three inputs so 8 cells is correct and group of 3 is wrong as 3 does not satisfy 2n

(iv) Each group should be as large as possible.

A A

BC BC

00 00

1 11 11 1

1 1

1 1

1 1

CORRECT WRONG

01 0111 1110 10

0
0

1
1

Fig. Four 1’s grouped together.

(v) Each cell containing a 1 must be in at least one group.

A

BC

00

1

1

1

1

01 11 10

0

1

Fig. Left out 1 grouped alone

Each 1 should be in at least one group, if that is not possible the left out 1 is grouped alone.

(i) Groups may overlap.

A

BC

00

111

1

1

1

01 11 10

0

1

Fig. Groups overlapping

(ii) Groups may wrap around the table. The leftmost, cell in a row may be grouped with the

rightmost cell and the top cell in a column may be grouped with the bottom cell.

A A
BC BC

00 00

1 1

1 11 1

1 1

01 0111 1110 10

0 0

1 1

Fig. Groups wrapping around the table

(iii) There should be as few groups as possible, as long as this not contradict any of the

previous rules.

Example. Minimize the following

(i) = + + Z AB AB AB

(ii) = + + + Z ABC AB ABC AC

(iii) = + Z ABC ABC

Solution: (i) = + + Z AB AB AB

We make the 2 variable K-Map

A

B
10

0 1

1

1

1

II

I

Fig Two variable K-Map for equation Z = AB + AB + AB

In this example, according to rule (iii) 1’s are grouped horizontal as well as vertically and

we generate two groups i.e. group I and group II. In group I, two 1’s are grouped which

corresponds to A = 0 & B = 0 and A = 0 B = 1 or we can say that they corresponds to A = 0

independent of the value of B. The expression of the output will contain a term A’.

Similarly, group II will contribute B’ in the output. So, simplifying we get

= + Z A B

(ii) = + + + Z ABC AB ABC AC

A
BC

00

1 1

1 11

1

01 11 10

0

1

II

I

Fig Three variable K-Map for equation Z = ABC + AB + ABC + AC

In this example using rule IV maximum number of 1’s i.e. four 1’s in this case are grouped

giving group I. In this example, there are a total of three groups I, II, III.

Group I reduces to B

Group II reduces to AC

Group III reduces to AC’

Simplifying we get

= + + Z B AC AC

(iii) = + Z ABC ABC

A
BC

00

1 1

01 11 10

0

1

Fig Three variable K-Map for equation Z = ABC + ABC

= Z AC

 Five and Six Variable Map. Map for 5 variables will contain 25 = 32 squares and for six

variables will contain 64 squares. Handling such large number of squares and combining

adjacent squares becomes tedious.

A five variable map is having five input variables say A, B, C, D, E then we can represent

the function using two four variable maps each distinguished by the value as shown in fig

below

BC BC
DE DE

00 0001 0111 1110 10

00 00

01 01

11 11

10 10

0 16

4 20

12 28

8 24

1 17

5 21

13 29

9 25

3 19

7 23

15 31

11 27

2 18

6 22

14 30

10 26

Fig variable K-Map

The two maps have variable B, C, D, E and are distinguished by A = 0 and A = 1. For map

having A = 0 the squares represents minterms 0 through 15 and the map for A = 1

represents from 16 to 31

Don’t Care Conditions.

Don’t care conditions can be defined as a condition where the output levels are not

specified for the inputs i.e. we don’t consider the outputs for these inputs. In such

situations designer has a flexibility and it is left to him whether to assume a 0 or a 1 as

outputs for each of these combinations. Don’t care conditions are represented as X mark

on the K-Map. The X mark in a cell may be assumed to be a 1 or a 0 depending upon which

one leads to a simpler expression.

Example. Simplify the Boolean function :

 F(A, B, C) = Σ(5, 6, 7) + d(3, 4)

where d(3, 4) represents don’t care conditions.

Solution:

A

BC

00

X

X 1 1 1

01 11 10

0

1

Fig.Three variable K-Map for function F(A, B, C) = Σ(5, 6, 7) + d(3, 4)

 POS simplification

Flip Flops

The memory elements in a sequential circuit are called flip-flops, which are capable of storing 1-

bit of information. A flip-flop is a synchronous version of the latch. "Flip-flop" is the common

name given to two-state devices, which offer basic memory for sequential logic operations. Flip-

flops are heavily used for digital data storage and transfer and are commonly used in banks

called "registers" for the storage of binary numerical data. A flip-flop circuit has two outputs, one

for the normal value and one for the complement value of the stored bit. Binary information can

enter a flip-flop in a variety of ways and gives rise to different types of flip-flops. A flip-flop is

usually controlled by one or two control signals and/or a gate or clock signal. The main

difference between latches and flip-flops is the method used to change their states. Latches are

level sensitive, or level-triggered. This means that the outputs are dependent on the voltage level

applied, not on any signal transition. Flip-flops are edge-triggered, that is that they depend on the

transition of a signal. This may either be a LOW-to-HIGH (rising edge) or a HIGH-to-LOW

(falling edge) transition.

S- R Flip-Flop:

 S-R (Set-Reset) flip flop can be constructed from NAND gates as shown in fig..

Fig. : SR Flip-Flop constructed from NAND gates

In the circuit shown in fig., there are three inputs S(Set), R (Reset) and Clk (Clock). In this

circuit, Clk input acts as a enable signal for the other two inputs i.e. S and R inputs. The circuit

operates normally when Clk input is 1 and when it is 0 the circuit remains in its previous state.

The information from S and R input is allowed to reach the output only when the Clk input is 1.

When Clk= 1, we can analyze the working of SR flip flop shown in fig. as follows:

Case(i): When S = 1 and R = 0, then the inputs at G1 will be 11 and at G2 will be l0 and as a

result the output of G1 is 0 and G2 is 1. These outputs then become the input to G3 and G4

respectively. We know that if any one input to NAND gate is 0, the output will be 1. So, the

output of G3 will be 1 i.e. Q = 1. Now the input at G4 becomes 11 and its output goes to 0 i.e. Q

=0. This state when Q = 1 Q = 0 is called as SET State.

Case(ii): Now when the input changes from S = 1 and R = 0 to S=0 and R=1, then the inputs at

G1 will be 01 and at G2 will be l1 and as a result the output of G1 is 1 and G2 is 0. These outputs

then become the input to G3 and G4 respectively. We know that if any one input to NAND gate

is 0, the output will be 1. So, the output of G3 will be 1 i.e. Q = 0. Now the input at G4 becomes

11 and its output goes to 0 i.e. Q =1. This state when Q = 0 Q = 1 is called as RESET State.

Case(iii): When from any of the two states explained above, the input changes to S = 0 and R

= 0, then we see that the output remains the same as was in previous state i.e. there is no change

in the output.

When inputs change to S = R = 1, then an indeterminate condition occurs. In this condition both

the outputs Q and Q are 0, which is not possible.

Table shows the truth table or characteristic table of SR flip flop.

 S R Q Q

 1 0

 0 0

 0 1

 0 0

 1 1

 1 0 (SET)

 1 0(No Change)

 0 1 (RESET)

 0 1(NoChange)

 Not Allowed

Table: Truth Table for SR flip flop

The standard truth table is given in table.

S R Q(t+1)

0 0

1 0

0 1

1 1

Q(t)

 1

 0

Not Allowed

Table : Truth Table for SR flip flop

In table , output Q(t+1) represents next state and Q(t) represents present sate. When inputs are 00

then the output in the next sate will be same as present state i.e. Q(t+1) = Q(t) and so on.

 Preset and Clear:

Initially when the device is switched ON then the state of the device is undefined and so is the

states of the memory element i.e. flip flop. So, to avoid this condition we assign the initial state

to the flip flop using two asynchronous inputs Preset (Pr) and Clear (Cr). These inputs can be

used along with the Clock but are not in synchronization with it. When both Pr and Cr inputs are

High i.e. Pr = Cr = 1 then the flip-flop operates normally. When Pr = 1 and Cr = 0 then the flip-

flop is RESET. When Pr = 0 and Cr = 1 then the flip-flop is SET. The condition Pr = Cr = 0

must be avoided as in this condition the state of the flip-flop will be uncertain.

Pr Cr Operation of flip

flop

1 1 Normal operation

1 0 Reset (Q = 0)

0 1 Set (Q = 1)

Table

SR Flip-Flop with Preset & Clear :

Block Diagram of Clocked SR flip-flop is shown in fig. It consists of Clock (Clk), Preset (Pr)

and Clear (Cr) inputs along with the Set (S) and Reset (R) inputs.

Fig. : Block diagram of Clocked SR flip-flop.

Clock signal is used for synchronization in a circuit. The circuit operates when the clock signal is

HIGH i.e. Clk = 1. Preset and Clear inputs applied to the flip flop with a bubble which signifies

that these signals are active LOW i.e. they are activated when their values are 0. A clocked SR

flip-flop with Clk, Clr and Pr inputs is shown in fig. below

Fig. : Clocked SR flip-flop.

SR flip-flop is activated i.e. the flip-flop to the inputs only when the clock is high (Clk =1). The

operation of SR flip-flop is similar to SR latch when Clk = 1 and Pr = Cr = 1. When Pr = 0 and

Clr = 1 then the flip-flop is SET i.e. Q = 1, and when Pr = 1 and Cr = 0 then the circuit is

RESET i.e. Q = 0. Pr and Cr signals are not in synchronization with the Clock pulse. They can

operate both in the presence as well as in the absence of the Clock pulse. Truth table for SR flip-

flop is given in Table given below.

Table : Truth Table for SR flip flop

Clk Pr Cr Output

1 1 1

X 1 0

 X 0 1

NormalOperation

1(Preset)

0(Clear)

In table, the don’t care condition (X) of Clk input represents that Pr and Cr inputs can override

the Clk input i.e. the circuit can be set or reset even in the presence of the Clk input.

 JK Flip-Flop

The JK flip flop is the most versatile flip-flop, and the most commonly used flip-flop when

discrete devices are used to implement arbitrary state machines. The RS flip-flop has a limitation

that it can only be used in applications where it can be guaranteed that both R and S cannot be

logic 1 at the same time as this can condition is indeterminate. The JK flip-flop augments the

behavior of the SR flip-flop by interpreting the S = R = 1 condition. A JK flip-flop is a

refinement of the SR flip-flop in that the indeterminate state of the SR type is defined in the JK

type. Block diagram of JK flip-flop is shown in fig..

Fig. Block Diagram of J-K Flip Flop.

We can obtain a JK flip flop from SR flip-flop by using following equations;

S = JQ

R = KQ

A JK flip flop obtained from such operation is shown in fig.

Fig.: A J-K Flip Flop obtained from S-R Flip Flop.

Fig.(a) shows the basic block diagram of the conversion of SR flip flop to JK flip-flop. In this

block diagram the inputs of SR flip flop are ANDed with the outputs according to the equation

defined. Fig (b) shows the logic circuit of the JK flip-flop using SR flip flop along with the Pr

and Cr inputs. The operation of JK flip flop is summarized as follows :

Case (i) When Pr = 1 and Cr = 1

When both Pr and Cr are HIGH and Clk = 1 then the circuit operates normally according to the

inputs. So, we consider the following cases:

 (a) When both the inputs are LOW i.e. J = K = 0 then the output of the flip flop is same as it

was in the previous state i.e. Q(t + 1) = Q(t).

 (b) When both the inputs are HIGH i.e. J=K=1 then the flip-flop switches to complement of

previous state, i.e., Q(t + 1) = ()Q t .

 (c) When J = 0 and K = 1 then the flip flop is RESET i.e. Q(t + 1) = 0.

 (d) When J = 1 and K = 0 then the flip flop is SET i.e. Q(t + 1) = 1.

Case (ii) When Pr = 0 and Clr = 1 then the flip flop is SET i.e. Q(t + 1) = 1 whatever be the

values of the inputs J and K.

Case (iii) Similarly, When Pr = 1 and Clr = 0 then the flip flop is cleared i.e. Q(t+1) = 0

The condition Pr = Cr = 0 must be avoided as in this condition the state of the flip-flop will be

uncertain. Table shows the truth table of JK flip-flop.

Clk Pr Clr J(t) K(t) Q(t +

1)

1 0 1 × ×

1 1 0 × ×

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

1

0

Q(t)

0

1

()Q t

Table: Truth Table for JK Flip flop

Race Around Condition

In JK flip-flop we have observed that our circuit operates normally when the Clk signal is HIGH.

In this theory we have assumed that the inputs remain the same during the clock pulse. But this is

not true, the input can change multiple times from 0 to 1 and 1 to 0 when the Clk signal is high,

due to feedback.

Let us take condition J = K = 1 and Q = 0 in account. The input clock pulse is applied is of width

tp as shown in fig 4.3.5.

tp

t

Fig. : Clock Pulse of width tp.

The propagation delay of NAND gates is assumed to be ∆t. So after ∆t time interval the output

changes from Q = 0 to Q = 1. Similarly after ∆t time period the output will again change from 1

to 0. If tp = 3 X ∆t, then in a single clock pulse the output will change thrice. So, at the end of the

clock pulse the output would be uncertain. This condition of uncertainty in the output is known

as Race Around Condition.

Race around condition can be removed when tp < ∆t. This condition is quite difficult to achieve

as the propagation delay itself is very small. There are two more ways of eliminating race around

condition. They are :

(i) Master Slave Configuration (ii) Edge Triggering

Master Slave JK Flip Flop:

A master-slave flip-flop is constructed from two separate JK flip-flops. One circuit serves as a

master and the other as a slave. The block-diagram of Master Slave JK flip-flop is shown in Fig.

4.3.6(a).

Fig. (a) : Block Diagram of Master Slave JK flip flop

The first flip-flop i.e. master is enabled on the positive edge of the clock pulse Clk and the

second flip-flop i.e. slave is enabled on the negative edge of Clk. When Clk = 1 then the first

flip-flop is enabled and produces the output, whereas at this time for the second flip flop Clk = 0

through the inverter and so is disabled. Again when Clk = 0, the first flip flop is disabled and the

output is the same as before, whereas now second flip flop is enabled and accepts the output of

the master flip flop as input and accordingly produces the output. So, it is clear that the operation

of first flip-flop depends on the primary inputs and of second flip-flop depends on first flip-flop

i.e. the second flip-flop simply follows the first flip-flop. Because of this reason the first flip-flop

is called as master and the second is called slave. The logic circuit of Master Slave JK flip-flop is

shown in fig.(b).

Fig. (b) : Master Slave JK Flip Flop.

The working of master slave JK flip flop overcomes the problem of race around condition that

occurs with a JK Flip-when J = K = 1. As any input to the master-slave flip-flop at J and K is

first seen by the master FF part of the circuit while CLK is High (=1). This behavior effectively

"locks" the input into the master FF. An important feature here is that the complement of the

CLK pulse is fed to the slave FF. Therefore the outputs from the master FF are only "seen" by

the slave FF when CLK is Low (= 0). Therefore on the High-to-Low CLK transition the outputs

of the master are fed through the slave FF. This means that the at most one change of state can

occur when J = K = 1 and so oscillation between the states Q = 0 and Q = 1 at successive CLK

pulses does not occur.

The timing relationship is shown in Fig and is assumed that the flip-flop is in the clear state prior

to the occurrence of the clock pulse. The output state of the master-slave flip-flop occurs on the

negative transition of the clock pulse.

ClK

J

K

Q

Fig Timing relationship in a master slave flip-flop. D (Delay) Flip Flop :

We used the JK flip-flop to eliminate the indeterminate state of SR flip flop i.e. when S = R = 1.

Another way to eliminate this condition is by making a arrangement such that the two inputs are

always complementary to each other. This condition is achieved in D flip flop in which the D

input goes directly to the S input and with a inverter to the R input as shown in fig..

D D

CLK CLK

Q Q

Q Q

SR
Flip Flop

D
Flip Flop

Cr Cr

Pr
Pr

 The characteristic equation of D flip flop is Q (t + 1) = D

The operations of D flip flop are summarized in the truth table shown in table 4.3.3.

 D Q(t + 1)

 0

 1

0

1

Table: Truth Table of clocked D Flip Flop

It is clear from the truth table shown in table above that the output at the end of the clock pulse

i.e. Q(t + 1) is equal to the input D before the clock pulse. We can summarize this as data in D

flip flop is transferred to the output after a certain delay and because of this reason this flip flop

is known as Delay flip flop.

A positive edge triggered D-flip flop is shown in fig.

In fig, there are six NAND gates, which constitute three basic SR flip-flops. The two SR flip-

flops in the beginning produces outputs, which are fed to third flip flop at the end as inputs S and

R and accordingly produces the final output.

T (Toggle) Flip Flop:

T flip-flop is a simplified version of the JK flip-flop and can be obtained from JK flip-flop. When

both the inputs of JK flip-flop are tied together, then the resulting flip flop is the T-flip flop.

Block diagram of T flip-flop is shown in fig..

Fig: Block Diagram of T flip flop.

Fig (a) shows the construction of T flip-flop from JK flip flop and fig. (b) shows the block

diagram of T flip flop. If the toggle (T) input is high, the T (Toggle) flip-flop changes state

("toggles"). If the T input is low, it holds the previous value. The logic circuit of T-flip flop is

shown in fig.

Fig. : Clocked T flip-flop.

The T flip-flop operates normally when the clock input is HIGH i.e. Clk = 1. The operation of T

flip-flop for Clk = 1 is summarized as:

When T = 0, the flip-flop does a hold. A hold means that the output, Q is kept the same as it was

before the clock edge i.e. Q(t + 1) = Q(t). When T = 1, the flip-flop does a toggle, which means

the output Q is negated after the clock edge, compared to the value before the clock edge. i.e. Q(t

+ 1) = ()Q t . The truth table for T flip flop is shown in table.

Q(t) T Q(t + 1)

 0 0 0 (Q(t))

 0 1 1 (()Q t)

 1 0 1 (Q(t))

 1 1 1 (()Q t)

T Q(t + 1)

0

1

Q(t)

()Q t

Truth table for T flip flop

This behavior is described by the characteristic equation :

Q(t + 1) = T ()Q t + T Q(t)

	0.1_table04
	0.1_table05
	0.1_graphic4F
	0.1_graphic50
	0.1_graphic51
	0.1_table06
	0.1_graphic52
	0.1_graphic53
	0.1_table07
	0.1_graphic57
	0.1_graphic58
	0.1_graphic5A
	0.1_graphic5B

